
Imperial College London Game Development

Game State
Presented by Haashim-Ali Hussain

What?

State is Data
that describes the game at a fixed moment in time

-- initialise variable to 0;
local i = 0

-- iterate through the values 1 to 10
while i < 10 do

 -- mutate the variable i
i = i + 1

 -- mutate the output
print(tostring(i) .. "/10")

end

class PersonWhoDoesntLikeTheirAge {
// Creating internal state
// This is mutable but is never mutated
constructor (private age : number) {}

// Externalising state
getAge() {

// External state is completely distinct
return 21;

}
}

int global_state = 0;

void mutate_global_state() {
global_state = global_state + 1;

}

void state_monitor() {
 while (true) {
 printf("global_state = %d \n", global_state);
 sleep(1);
 }
}

void main () {
 // spawn the monitor thread
 pthread_t monitor_thread;
 pthread_create(&monitor_thread, NULL, (void *) state_monitor, NULL);
 while (true) {
 // spawn a thread to mutate the global state asynchronously
 pthread_t thread;
 pthread_create(&thread, NULL, mutate_global_state, NULL);
 }
}

Stateful Reflection

So Many Types…
Let’s explain

• Internal State

• Mutable State

• Immutable State

• Shared/Global State

• We are ignoring Networking for now

Game State is Confusing
Let’s disambiguate

• Game State can refer to many things.

• The entire state of the game at any point in time is one interpretation.

• We strive for a minimal game state from which all other substates can be
inferred.

• This can be thought of as a reduction of the entire Game State into a core
state machine.

• And all dependent states on this core can be thought of as effects.

• Thus simplifying Game State state into this idea of a “core” state.

Why is Game State so Complex?
A brief dive into the intricacies.

• Networking adds a layer of inconsistency to Game State.

• Not all Game State needs to be:

• Replicated

• Consistent

• Public

• Server-Authoritative

• Static

Paradigm Time

Why are Paradigms Important?
Like fr?

• Paradigms shape your code

• This affects both readability and extensibility

• They influence the level of coupling in your codebase

• This has knock-on effects on maintainability

• They affect performance of code

• And not just as a micro-optimisation

Which Paradigms are Good Tools?
And which aren’t?

• Object Oriented Programming is good at protecting its Internal State.

• But large inheritance trees lead to tightly coupled code.

• Internal State has the tendency to compound and become hard to manage.

• Extensibility is hard

• Data Oriented Programming is ideal

• Entity Component Systems bypass the above problems architecturally

• And allow for optimisations abusing cache-locality

Reactive Programming
Is great for State

• Reactive programming is a subset of declarative programming

• Used in UI frameworks (React is not pure Reactive though!)

• You have encountered another subset of declarative before if you’ve
programmed functionally (Haskell?)

• Ties into the game state machine discussed earlier

• Lets you declare your state

• And it’s interactions

Reactive Programming
Is great for State

• It allows for asynchronous programming

• You have met this paradigm before if you’ve used the Promise pattern

• Asynchronous code is great for concurrency

new Promise<number>((resolve, reject) => {
// Do some asynchronous work
// I.e. fetching data
let data: number = 10;
resolve(data);

})
.then((data: number) => {
console.log(data);
return data.toString();

})
.then((data: string) => {
console.log(data);
return data.length;

})
.catch((error: any) => {
console.log(error);

});

Reactive Programming
Isn’t all good!

• You have to change the way you debug

• It does not get easier

• You now have debug a state graph… somehow

• It’s a whole Paradigm Shift

• It is sometimes unintuitive

• There is a big learning curve

Implementation Station

Observable State Tree
Simplifies the State Graph

• Observer Pattern

• Nodes represent an Observable State

• Children represent Logical Substates

• Changes are propagated up the Ancestor Chain

• Intuitive design pattern

• Very much possible to have a directed Observable State Graph instead.

• Introduces cyclic state dependencies

Replication Situation
Network Communication Implementation

• Replication Baskets

• ClientPrivate, ClientPublic, ServerPublic, ServerPrivate

• Data Ownership

• Client/Server Authority

• Client/Server Read/Write Access

• Consistent/Inconsistent State

const STATES = ROAST.CreateDefinitions({
Public: Nodes.PublicServer({

Mobs: Nodes.Branch({
Minions: Nodes.Vine((mobData: MobData) => {

return {
Health: Nodes.Leaf(100),
MobID: Nodes.Leaf(mobData),
Animation: Nodes.Leaf(AnimationState.IDLE),

};
),
Turrets: Nodes.Vine((turret: TurretSize) => {

return {
Health: Nodes.Leaf(

turret === TurretSize.SMALL
? 500
: turret === TurretSize.LARGE
? 1000
: 2500,

),
};

}),
Jungle: Nodes.Vine((mobData: MobData) => {

return {
Health: Nodes.Leaf<number>(),

};
}),

}),
}),
Client: Nodes.PublicClient((plr) => {

return {
Health: Nodes.Leaf<number>(),

};
}),
Server: Nodes.PrivateServer({}),
Private: Nodes.PrivateClient({}),

});

Thanks for listening!

